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Anticholinesterases are themost common treatment for Alzheimer's disease, and, in recent years, a new group
of cholinesterase inhibitors (i.e. rivastigmine, galantamine, and donepezil) has become available. Although
these drugs improve cognitive symptoms, they also can induce or exacerbate parkinsonian symptoms,
including tremor. The present studies were conducted to determine if galantamine induces tremulous jaw
movements, a rodentmodel of parkinsonian tremor, and to investigate whether these oral motor impairments
can be reversed by co-administration of adenosine A2A antagonists. The first experiment demonstrated that
systemic injections of galantamine (0.75–6.0 mg/kg I.P.) induced a dose-related increase in tremulous jaw
movements in rats. In a second study, co-administration of the muscarinic antagonist scopolamine (0.0156–
0.25 mg/kg I.P.) produced a dose dependent suppression of tremulous jawmovements induced by a 3.0 mg/kg
dose of galantamine, indicating that galantamine induces these tremulous oral movements through actions
on muscarinic acetylcholine receptors. In two additional studies, analyses of freeze-frame video and
electromyographic activity recorded from the lateral temporalis muscle indicated that the local frequency of
these galantamine-induced jaw movements occurs in the 3–7 Hz frequency range that is characteristic of
parkinsonian tremor. In the final experiment, the adenosine A2A antagonist MSX-3 significantly attenuated the
tremulous jaw movements induced by the 3.0 mg/kg dose of galantamine, which is consistent with the
hypothesis that co-administration of adenosine A2A antagonists may be beneficial in reducing parkinsonian
motor impairments induced by anticholinesterase treatment.
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1. Introduction

Alzheimer's disease affects an estimated 15 million people world-
wide and accounts for approximately 50–60% of cases of dementia
in people over 65 years of age (Francis et al., 1999; van Marum,
2008;). Characterization of dementia-related cholinergic dysfunc-
tions, including reductions in choline acetyltransferase activity and
acetylcholine synthesis (Bowen et al., 1976; Davies and Maloney,
1976; Perry et al., 1977), lowered levels of choline uptake (Rylett
et al., 1983) and acetylcholine release (Nilsson et al., 1986), and loss
of cholinergic cell bodies from the nucleus basalis of Meynert
(Whitehouse et al., 1982), led to the hypothesis that cholinomimetic
drugs could be useful for treating the cognitive symptoms of
Alzheimer's disease and related disorders (Bartus et al., 1982;
Salamone, 1986). Anticholinesterases are used to improve cognitive
function in Alzheimer's disease patients (see Birks, 2006; van Marum,
2008 for review). Yet despite their positive therapeutic effects,
anticholinesterases also have been shown to induce parkinsonian
symptoms, including tremor, in human patients. It was reported
several years ago that tacrine, which was the first anticholinesterase
that was approved for treatment of Alzheimer's disease, could
produce parkinsonian side effects including tremor (Ott and Lannon,
1992; Cabeza-Alvarez et al., 1999). More recently, the anticholines-
terases donepezil, rivastigmine and galantamine were developed as
alternatives that have largely replaced tacrine, yet tremor has been
reported to occur in response to each of them (Shea et al., 1998; Arai,
2000; Aarsland et al., 2003; Emre et al., 2004; Gurevich et al., 2006;
McCain et al., 2007; Litvinenko et al., 2007, 2008; Song et al., 2008).

Animal research on the tremor induced by anticholinesterases
could yield insights into the neurochemical processes underlying
cholinomimetic-induced parkinsonian tremor in humans, and could
lead to the development of novel treatments. One rodent model of
parkinsonian tremor that has undergone extensive validation is the
tremulous jawmovement model (Salamone et al., 1998, 2005, 2008b;
Cenci et al., 2002; Simola et al., 2004, 2006; Miwa, 2007; Miwa et al.,
2008, 2009). Tremulous jaw movements are defined as repetitive
vertical deflections of the lower jaw that resemble chewing but are not
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directed at a particular stimulus (Salamone et al., 1998). These
movements can be induced by many conditions that are associated
with parkinsonism, including neurotoxic or pharmacological depletion
of striatal dopamine (DA; Jicha and Salamone, 1991; Baskin and
Salamone, 1993; Steinpreis and Salamone, 1993; Rodriguez Diaz et al.,
2001; Salamone et al., 2008a; 2008b), and acute or subchronic
administration of DA antagonists (Steinpreis et al., 1993; Trevitt et al.,
1998; Wisniecki et al., 2003; Ishiwari et al., 2005; Betz et al., 2007;
Salamone et al., 2008a, 2008b). Tremulous jaw movements also are
induced by cholinomimetic drugs, includingmuscarinic agonists such as
pilocarpine, arecoline and oxotremorine (Salamone et al., 1986, 1990,
2001; Mayorga et al. 1999; Collins et al., 2010a), and the anticholines-
terases physostigmine and tacrine (Mayorga et al., 1997; Cousins et al.
1999; Simola et al., 2004, 2006). As shown by studies using videotape
analyses or electromyographic (EMG) methods, tremulous jaw move-
ments occur largely within the 3–7 Hz frequency range that is
characteristic of parkinsonian resting tremor (Cousins et al., 1998;
Finn et al., 1997;Mayorga et al., 1997; Ishiwari et al., 2005; Collins et al.,
2010a). Tremulous jaw movements also can be attenuated by several
classes of antiparkinsonian drugs, including DA agonists, anticholiner-
gics, and adenosine A2A antagonists (Baskin and Salamone, 1993;
Steinpreis et al., 1993; Cousins et al., 1997; Salamone et al., 1998, 2005,
2008ab; Correa et al., 2004; Simola et al., 2004, 2006; Betz et al., 2007,
2009; Tronci et al., 2007; Collins et al., 2010a; Pinna et al., 2010).

The present experiments investigated the ability of the anticho-
linesterase galantamine to induce parkinsonian tremor using the
tremulous jaw movement model in rats. Galantamine (Reminyl) has
been shown to induce and worsen tremor in human patients
(Aarsland et al., 2003; Schrauwen and Ghaemi, 2006; Litvinenko
et al., 2008; Grace et al., 2009). The first experiment studied the ability
of galantamine (0.75 mg/kg–6.0 mg/kg) to induce tremulous jaw
movements. A second studywas conducted to investigate the ability of
the muscarinic antagonist scopolamine to block the oral movements
induced by 3.0 mg/kg galantamine in order to determine whether the
tremorogenic effects of galantamine were occurring through actions
on muscarinic acetylcholine (ACh) receptors. In the third and fourth
studies, the local frequency range of the tremulous jaw movement
“bursts” induced by galantamine administration was characterized
using freeze-framevideotape analysis and EMGrecordingof the lateral
temporalis muscle, which is the jaw-closing muscle most closely
associated with tremulous jaw movement activity (Cousins et al.
1998; Collins et al., 2010a). In the final experiment, the ability of the
adenosine A2A antagonist MSX-3 to reverse galantamine-induced
tremulous jawmovements was investigated. Adenosine A2A receptors
are expressed to a high degree in the neostriatum, particularly on the
enkephalin-positive striatopallidal neurons (Schiffman et al., 1991;
Fink et al., 1992; Rosin et al., 1998; Svenningsson et al., 1999; Fuxe
et al., 2007), and adenosine A2A antagonists are being assessed for
their potential antiparkinsonian actions (Ferré et al., 2008; LeWitt
et al., 2008; Jenner et al., 2009; Salamone, 2010). MSX-3 is a well
characterized (Salamone et al., 2008a; Collins et al., 2010a,b) pro-drug
that is converted in vivo into the active adenosine A2A antagonist
MSX-2. Based upon previous findings that adenosine A2A antagonists
are capable of attenuating the tremulous jaw movements induced by
DA antagonists (Correa et al., 2004; Betz et al., 2009; Salamone et al.,
2008a), the muscarinic agonist pilocarpine (Collins et al., 2010a), and
the anticholinesterase tacrine (Simola et al., 2004; Tronci et al., 2007),
it was hypothesized thatMSX-3would be able to reverse galantamine-
induced tremulous jaw movements.

2. Materials and methods

2.1. Animals

A total of 35 male Sprague Dawley rats (Harlan Sprague Dawley,
Indianapolis, IN) with no prior drug experience were used. The rats
weighed 350–500 g during the course of the experiment and had ad
libitum access to lab chowandwater. Theywere group-housed in a colony
thatwasmaintained at approximately 23 °C and had a 12-hour light/dark
cycle (lights on at 0700 h). These studies were conducted according to
University of Connecticut and NIH guidelines for animal care and use.

2.2. Pharmacological agents

The acetylcholinesterase inhibitor galantamine hydrobromide
((4aS,6R,8aS)-5,6,9,10,11,12-hexahydro-3-methoxy-11-methyl-4aH-
[1]benzofuro[3a,3,2-ef] [2] benzazepin-6-ol) was obtained from
Tocris Bioscience (Bristol, UK). Galantamine was dissolved in 0.9%
saline. The muscarinic antagonist scopolamine hydrobromide was
purchased from Sigma Aldrich Chemical (St. Louis, MO). Scopolamine
was dissolved in 0.9% saline. MSX-3 ((E)-phosphoric acid mono-
[3-[8-[2-(3-methoxyphenyl)vinyl]-7-methyl-2,6-dioxo-1-prop-2-
ynyl-1,2,6,7-tetrahydropurin-3-yl]propyl]ester was synthesized at
the Pharmazeutisches Institut (Universität Bonn; Bonn, Germany
(see Sauer et al., 2000; Hockemeyer et al., 2004). MSX-3was dissolved
in 0.9% saline. The pH of the MSX-3 solution was adjusted by adding
1.0 N NaOH until the drug was completely in solution after conversion
to its disodium salt (pH 7.1–7.4). MSX-3 is a pro-drug of the active
adenosine A2A antagonist, MSX-2. All injections were intraperitoneal
(IP), in a total volume of 1.0 mL/kg.

2.3. Selection of doses

The doses of galantamine used in the first experiment were similar
to those used in previous behavioral experiments in rodents
(Sweeney et al., 1990; Van Dam et al., 2005; Hohnadel et al., 2007;
Muthuraju et al., 2009; Yano et al., 2009) and were based
upon extensive pilot work. The specific dose of 3.0 mg/kg galantamine
used in experiments 2–6 was based upon the results of the first
experiment, and was consistent with a dose used commonly in other
behavioral studies (Woodruff-Pak et al., 2001, 2007; Woodruff-Pak
and Santos, 2000; Sharp et al., 2004; Hernandez et al., 2006; Hohnadel
et al., 2007; Muthuraju et al., 2009; Yano et al., 2009). The doses
of scopolamine used in the second experiment were selected based
upon previous studies reporting that this dose range is behaviorally
effective in the tremulous jawmovementmodel, operant choice tasks,
and cognitive tasks in rodents (Warburton and Brown, 1971;Mayorga
et al., 1997; Presburger and Robinson, 1999; McLaughlin et al.,
2005). Doses of MSX-3 used in the final experiment were previously
shown to reverse tremulous jaw movements and locomotor deficits
induced by administration of DA antagonists and muscarinic agonists
in rodents (Salamone et al., 2008a; Collins et al., 2010a, 2010b).

2.4. Behavioral procedures

2.4.1. Tremulous jaw movements
Observations of rats took place in a 30×30×30 cm clear Plexiglas

chamber with a wire mesh floor, which was elevated 42 cm from the
table top. This allowed for the viewing of the animal from several
angles, including underneath. Tremulous jaw movements were
defined as rapid vertical deflections of the lower jaw that resembled
chewing but were not directed at any particular stimulus (Salamone
et al., 1998). Each individual deflection of the jaw was recorded using
a mechanical hand counter by a trained observer, who was blind to
the experimental condition of the rat being observed. Separate studies
with two observers demonstrated an inter-rater reliability of r=0.98
(pb0.05) using these methods.

2.4.2. EMG electrode implantation, recording, and analysis of tremulous
jaw movements

Rats were anesthetized with a ketamine/xylazine cocktail, and two
electrodes of linearly spaced 50.0 μm tungsten wire (California Fine
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Wire, Grover Beach, CA) were surgically implanted approximately
1.0 mm deep with a 27-gauge needle into each lateral temporalis
muscle (for a total of four electrodes). Previous research has
demonstrated that the lateral temporalis muscle is the jaw muscle
that shows activity most closely related to tremulous jaw movements
(Cousins et al., 1998). All electrodes were then attached to a female
pin (Omnetics, Minneapolis, MN) secured in a rectangular five by four
pin array. Two stainless steel watch screws served as indifferent and
ground electrodes. The ensemble was fastened to the skull with two
additional screws and cranioplastic cement. Following electrode
implantation, rats were allowed one week to recover, after which
recording sessions began. On the test day, rats received an IP injection
of 3.0 mg/kg galantamine. Twenty minutes later, recordings were
performed for 15 min. During the recording session, the animals
were connected to the recording apparatus by a multi-wire cable that
was attached to a pulley system in the ceiling. All recordings were
performed using the Cheetah 16 recording system and Cheetah Data
Acquisition Software (Neuralynx, Bozeman, MT). During the record-
ing session, a trained observer recorded tremulous jaw movements.
At the conclusion of the recording session, data were examined using
the Neuraview program (Neuralynx, Bozeman, MT), which allowed
for the simultaneous viewing of EMG traces and tremulous jaw
movement event recordings. Traces were then imported into Matlab
7.4 (Mathworks Inc., Natick, MA), bandpass filtered between 500 and
1500 Hz, and plotted graphically.

2.5. Experimental procedures

2.5.1. Experiment 1: induction of tremulous jaw movements by the
anticholinesterase galantamine

A group of 8 rats was used to assess the effect of galantamine (0.75–
6.0 mg/kg) on the induction of tremulous jaw movements. All rats
received IP injections of 1.0 mL/kg saline or 0.75 mg/kg, 1.5 mg/kg,
3.0 mg/kg, or 6.0 mg/kg galantamine in a within-groups design, with
all rats receiving all drug treatments in a randomly varied order (one
treatment per week; no treatment sequences were repeated). Ten min
after IP injection, rats were placed in the Plexiglas observation chamber
and allowed 10 min to habituate. Following this habituation period,
tremulous jaw movements were counted for 15 min, with the
observation period divided into three separate 5-minute epochs
(following the procedure of Collins et al., 2010a). Jaw movements
were recorded for each of the epochs, afterwhich both the total number
of jaw movements for the observation period and the average number
of jaw movements per 5 min epoch was calculated.

2.5.2. Experiment 2: blockade of galantamine-induced tremulous jaw
movements by the muscarinic antagonist scopolamine

A group of 10 rats was used to assess the effects of scopolamine
(0.0156–0.25 mg/kg IP) on the tremulous jawmovements induced by
IP administration of 3.0 mg/kg galantamine. A within-groups design
was utilized for this study, with all rats receiving all combined drug
treatments in a randomly varied order (one treatment per week; no
treatment sequences were repeated). On the test day each week,
all rats first received an IP injection of either1.0 ml/kg saline or
0.0156 mg/kg, 0.03125 mg/kg, 0.0625 mg/kg, 0.125 mg/kg or 0.25 mg/
kg scopolamine. Thirty minutes after scopolamine injection, each rat
was given an IP injection of 3.0 mg/kg galantamine to yield the
following combined treatment conditions: 3.0 mg/kg galantamine+
saline vehicle, 3.0 mg/kg galantamine+0.0156 mg/kg scopolamine,
3.0 mg/kg galantamine+0.03125 mg/kg scopolamine, 3.0 mg/kg
galantamine+0.0625 mg/kg scopolamine, 3.0 mg/kg galantamine+
0.125 mg/kg scopolamine, or 3.0 mg/kg galantamine+0.25 mg/kg
scopolamine. Ten minutes after galantamine injection, rats were
placed in the Plexiglas observation chamber and allowed 10 min to
habituate, after which tremulous jaw movements were counted for
15 min, following the same procedure outlined above.
2.5.3. Experiment 3: freeze-frame video analysis of local frequency of the
tremulous jaw movements induced by galantamine

Five rats received an injection of 3.0 mg/kg galantamine. Twenty
minutes later, rats were placed in a clear Plexiglas tube (9 cm in
diameter) so that a consistent view of the orofacial area could be
achieved. After habituating for 10 min, each rat was videotaped for
15 min using a FlipVideo UltraHD (Cisco Systems, Farmington, CT).
The sections of these video files that allowed for clear observation
of the orofacial area were then subjected to a freeze-frame analysis
(1 frame=1/30 s), in which the observer went frame-by-frame
through each burst of jaw movements (i.e., each group of at least two
jaw movements that were within 1.0 s of each other). The observer
recorded the inter-movement interval for each jaw movement within
these bursts, which was defined as the number of frames between
each point at which the jaw was fully closed during successive jaw
movements. This information was then used to determine the local
frequency within bursts of jaw movements.

2.5.4. Experiment 4: Local Frequency analysis of EMG activity recorded
from the lateral temporalis muscle during galantamine-induced
tremulous jaw movements

Four rats were implanted bilaterally in the lateral temporalis
muscle with tungsten wire electrodes (two electrodes in each muscle
for a total of four electrodes) using the procedure described above.
Following a one week recovery period, rats were administered an
IP injection of 3.0 mg/kg galantamine. Ten minutes later, rats were
connected to the recording apparatus via a multiwire cable and placed
into an elevated Plexiglas chamber for a 10 min habituation period.
Following this 10 min period, recordings of EMG activity were
performed as described above. Following identification of individual
tremor epochs (e.g., the periods of time during which bursts of tremor
were shown), a spectrum of each epoch was calculated using the
multi-taper spectral estimation method (Mitra and Bokil, 2008a,
2008b). All spectral analyses were performed using the Spectral
Analysis Toolbox of Chronux (http://chronux.org/).

2.5.5. Experiment 5: ability of the adenosine A2A antagonist MSX-3 to
attenuate galantamine-induced tremulous jaw movements

A group of 8 rats was used to assess the effects of the adenosine A2A

antagonistMSX-3 (1.25–10.0 mg/kg) on the tremulous jawmovements
induced by administration of 3.0 mg/kg galantamine. A within-groups
design was utilized for this study, with all rats receiving all drug
treatments in a randomly varied order (one treatment per week; no
treatment sequences were repeated). On test day each week, all rats
received an IP injection of 3.0 mg/kg galantamine. Concurrently, each
rat was given an IP injection of either 1.0 mL/kg saline or 1.25 mg/kg,
2.5 mg/kg, 5.0 mg/kg, or 10.0 mg/kg MSX-3, to yield the following
combined treatment conditions: 3.0 mg/kg galantamine+saline vehicle,
3.0 mg/kg galantamine+1.25 mg/kg MSX-3, 3.0 mg/kg galantamine+
2.5 mg/kg MSX-3, 3.0 mg/kg galantamine+5.0 mg/kg MSX03, and
3.0 mg/kg galantamine+10.0 mg/kg MSX-3. Ten minutes after injec-
tions, rats were placed in the Plexiglas observation chamber and
allowed 10 min to habituate, after which tremulous jaw movements
were counted for 15 min as described above.

2.6. Data analyses

The behavioral data for all experiments were analyzed using a
repeatedmeasures analysis of variance (ANOVA). Average tremulous jaw
movements over the three 5-min observation epochswere calculated and
then used in the ANOVA calculations. A computerized statistical program
(SPSS 12.0 for Windows) was used to perform these analyses. When
there was a significant ANOVA, planned comparisons using the overall
error termwere used to assess the differences between each dose and the
control condition; the total number of comparisons was restricted to
the number of treatmentsminus one (Keppel, 1991). All spectral analyses

http://chronux.org/


417L.E. Collins et al. / Pharmacology, Biochemistry and Behavior 99 (2011) 414–422
were performed using the Spectral Analysis Toolbox of Chronux (http://
chronux.org/; Mitra and Bokil, 2008a, 2008b).

3. Results

3.1. Experiment 1: induction of tremulous jaw movements by the
anticholinesterase galantamine

Fig. 1A shows the effects of injections of galantamine (0.75–
6.0 mg/kg) on tremulous jaw movement activity. Repeated measures
ANOVA revealed that there was a significant overall effect of drug
treatment on tremulous jaw movement activity (F(4,28)=25.796;
pb0.001). Planned comparisons showed that the 1.5 mg/kg (pb0.01),
3.0 mg/kg (pb0.001) and 6.0 mg/kg (pb0.001) doses of galantamine
all significantly induced tremulous jaw movements (pb0.001)
compared to rats treated with saline vehicle.

3.2. Experiment 2: blockade of galantamine-induced tremulous jaw
movements by the muscarinic antagonist scopolamine

Fig. 1B illustrates that administration of the muscarinic antagonist
scopolamine blocked the tremulous jaw movements induced by
Fig. 1. A. Effects of different doses of galantamine (IP) on tremulous jaw movements.
Mean (± SEM) number of jaw movements in rats treated with either saline vehicle
(Veh) or galantamine. *significant difference from vehicle control (pb0.05). B. Effect
of the muscarinic antagonist scopolamine on galantamine-induced tremulous jaw
movements. All rats received an IP injection of 3.0 mg/kg galantamine. Mean (± SEM)
number of jaw movements in rats treated with galantamine plus vehicle (Veh), and
galantamine plus various doses of scopolamine (0.01625–0.25 mg/kg IP). *significant
difference from galantamine plus vehicle (Veh) control (pb0.05).
3.0 mg/kg galantamine. Repeated measures ANOVA revealed that
there was a significant overall effect of scopolamine treatment on the
induction of tremulous jaw movement activity by 3.0 mg/kg galanta-
mine (F(5,45)=136.2; pb0.001). Planned comparisons showed
that all 5 doses of scopolamine (0.0156 mg/kg; 0.03125 mg/kg;
0.0625 mg/kg; 0.125 mg/kg; and 0.25 mg/kg) were capable of signif-
icantly reducing the jaw movements induced by 3.0 mg/kg galanta-
mine (different from galantamine plus saline, pb0.001). Orthogonal
analysis of trend showed that there was a significant linear dose-
related trend (F(1,9)=202.2, Pb0.001) and a significant dose-related
quadratic trend (F(1,9)=250.4, pb0.001).

3.3. Experiment 3: freeze-frame video analysis of local frequency of the
tremulous jaw movements induced by galantamine

Fig. 2 displays the results of the freeze-frame analyses of
videotaped samples of galantamine-induced jaw movement activity.
A total of 753 jaw movements were analyzed. 65.78% of these jaw
movements took place within “bursts,” defined as a group of at least
two jaw movements that were within 1.0 s of each other. Data are
shown as the number of inter-movement intervals between move-
ments in each burst, defined as the number of 1/30 s frames between
each point at which the jaw was fully closed during successive jaw
movements. To interpret these data in terms of frequencies (i.e. jaw
movements per second), the reciprocal of the inter-movement
interval was calculated (e.g. 5/30 frames per second corresponds to
6 Hz; 6/30 frames per second to 5 Hz, etc.) The vast majority (96.95%)
of the jaw movement activity within bursts took place in the 3.0–
7.5 Hz frequency range, with a peak in activity in the 5–6 Hz range.
Repeated measures ANOVA revealed that the number of inter-
movement intervals showed an overall significant difference across
the different interval bins (F (29,116)=6.684; pb0.001, R2=0.626).

3.4. Experiment 4: local frequency analysis of EMG activity recorded
from the lateral temporalis muscle during galantamine-induced
tremulous jaw movements

Fig. 3 displays representative 2-s traces recorded from the lateral
temporalismuscle of an animal that received an injection of 3.0 mg/kg
galantamine. The top panel shows raw EMG and spectral analysis data
Fig. 2. This figure shows the results of the freeze-frame analysis of inter-movement
intervals for the galantamine-induced tremulous jaw movements in 5 representative
rats. Distribution of the mean (±SEM) number of inter-movement intervals within
each 1/30 s time bin is shown. Bar indicates the inter-movement times that correspond
to the 3.0–7.5 Hz frequency range (i.e., 4/30=7.5 Hz, 10/30=3.0 Hz).

http://chronux.org/
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image of Fig.�2


Fig. 3. Raw EMG traces obtained from the temporalis muscle, and the corresponding
spectral analyses. Top. Representative raw EMG trace (2 s sweep) from the temporalis
muscle of a rat that received 3.0 mg/kg galantamine, during which no tremulous jaw
movements were shown. During this period of quiescence (i.e. when no jaw
movements were occurring), spectral analysis of the trace using multi-taper spectral
estimation showed no peak in the 3–7 Hz frequency range (only inherent noise in the
recording system at frequencies less than 1 Hz, and an exponential decay at higher
frequencies). Bottom. Representative raw EMG trace (2 s sweep) from the temporalis
muscle of a rat that received 3.0 mg/kg galantamine, during which the rat showed a
large burst of multiple jaw movements recorded by the observer. The temporalis
muscle is a jaw closing muscle, and this burst of activity in the 5–6 Hz frequency range
corresponded with the jaw closing phase of each jaw movement. Spectral analysis of
this trace using multi-taper spectral estimation carried out using the Spectral Analysis
Toolbox of the Chronux software package indicated a peak in power at the 5–6 Hz
frequency (arrow).

Fig. 4. Effect of the adenosine A2A antagonist MSX-3 on the tremulous jaw movements
induced by 3.0 mg/kg galantamine IP. Mean (±SEM) number of jaw movements in
rats treated with galantamine plus vehicle (Veh), and galantamine plus various doses
(1.25–10.0 mg/kg) of MSX-3. *significant difference from galantamine plus vehicle
(Veh) control (pb0.05).
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for a trace in which there were no tremulous jaw movements. During
this period without jaw movements, there was no peak in the 3–7 Hz
range. The bottom panel shows a raw 2-s EMG trace during which the
rat showed a large burst of tremulous jaw movement activity. As the
trace illustrates, these movements were accompanied by jaw muscle
activity in the 5–6 Hz frequency range. Furthermore, spectral analysis
of this trace using the multi-taper spectral estimation method
demonstrated that the peak in power of the tremor epoch occurred
at 5–6 Hz. These findings are consistent with freeze frame videotape
analyses performed in the third experiment.

3.5. Experiments 5: ability of the adenosine A2A antagonist MSX-3 to
attenuate the tremulous jaw movements induced by galantamine

Co-administration of the adenosine A2A antagonist MSX-3 atten-
uated the tremulous jaw movements induced by a dose of 3.0 mg/kg
galantamine (Fig. 4). Repeated measures ANOVA revealed that
there was a significant overall effect of MSX-3 treatment on the
induction of tremulous jaw movement activity by 3.0 mg/kg galanta-
mine (F(4,28)=5.364; pb0.01). Planned comparisons showed that
the 5.0 and 10.0 mg/kg doses of MSX-3 were capable of significantly
reducing the tremulous jaw movements induced by 3.0 mg/kg
galantamine (i.e., compared to galantamine plus saline; pb0.01).

4. Discussion

The present studies investigated the ability of the anticholinesterase
galantamine to induce tremulous jaw movements, which is a widely
used rodentmodel of parkinsonian tremor (Salamone et al., 1998, 2005,
2008b; Simola et al., 2004, 2006; Miwa et al., 2008, 2009; Kasture et al.,
2009; Trevitt et al., 2009; Delattre et al., 2010). As shown in Fig. 1A,
galantamine induced tremulous jawmovements at a dose range of 1.5–
6.0 mg/kg. This finding is consistent with previous studies showing
that another anticholinesterase, tacrine (Cognex), also is able to induce
tremulous jaw movements in rats (Carriero et al. 1997; Mayorga et al.,
1997; Finn et al., 1997; Cousins et al., 1997, 1998; Trevitt et al. 1997,
1999; Trevitt et al., 2009; Simola et al., 2004; Betz et al., 2005, 2007;
Tronci et al., 2007; Miwa et al., 2008, 2009; Vanover et al., 2008). Local
frequency analysis of the galantamine-induced jaw movements using
both freeze framevideo analysis (Fig. 2) andEMGactivity recorded from
the lateral temporalis muscle (Fig. 3) indicated that the tremulous jaw
movements induced by 3.0 mg/kg galantamine occurred in the 3–7 Hz
frequency range, with a peak frequency in the vicinity of 5–6 Hz.
Although previous research in this area focused upon visual inspection
of raw EMG traces (Cousins et al., 1998; Collins et al., 2010a), this is the
first study to characterize the local frequency of tremulous jaw
movements using quantitative spectral analysis of EMG data. Spectral
analysis of an individual identified tremor burst epoch demonstrated
that a peak in power occurred at 5–6 Hz, a phenomenon that was not
present in the spectrum when tremor was not occurring (Fig. 3). This
frequency range is consistent with the overall finding that the local
frequency of the tremulous jaw movements induced by DA depletion,
D2 antagonism, and administration of other cholinomimetic drugs (e.g.
tacrine) is in the 3–7 Hz range (Salamone and Baskin, 1996; Finn et al.,
1997; Mayorga et al., 1997; Cousins et al., 1998; Ishiwari et al., 2005;
Collins et al., 2010a). Moreover, this 3–7 Hz frequency range is
consistent with that reported during resting tremor in parkinsonian
patients, and is distinct from that seen in dyskinesias (1–2 Hz) and
postural tremor (8–12 Hz) (Findley et al., 1981;Marsden, 1984;Deuschl

image of Fig.�3
image of Fig.�4
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et al., 2000, 1996; Dueschl, 1999; Spieker et al., 1997). Galantamine
belongs to a later generation of anticholinesterases that was introduced
after tacrine, and, although earlier studies suggested that galantamine
did not worsen motor symptoms (Fuchs et al., 2004), later reports have
repeatedly demonstrated that galantamine can induce or exacerbate
tremor in humans (Schrauwen and Ghaemi, 2006; Litvinenko et al.
2007; Litvinenko et al., 2008; Grace et al., 2009). Other “second
generation” anticholinesterases, including donepezil and rivastigmine,
also have been shown to induce tremor in human patients (Bourke and
Druckenbrod, 1998; Iwasaki et al., 1988; Kao et al., 1993; McSwain and
Forman, 1995; Shea et al., 1998; Arai, 2000; Gurevich et al., 2006; Oertel
et al., 2008; Song et al., 2008). Taken together, these results raise
possible concerns for the widespread use of cholinesterase inhibitors in
clinical populations, and suggest the need for the development of
treatment strategies to counteract the motor impairments induced by
anticholinesterase therapy.

The muscarinic antagonist scopolamine potently blocked the
tremulous jaw movements induced by 3.0 mg/kg of galantamine
(Fig. 1B). These results are consistent with previous findings
demonstrating that cholinomimetic-induced tremulous jaw move-
ments result from central muscarinic stimulation. The anticholines-
terase neostigmine, which provides peripheral muscarinic and
nicotinic receptor stimulation but does not pass the blood–brain
barrier, did not induce tremulous jaw movements (Rupniak et al.
1983, 1985). Systemic administration of carbachol, which does not
penetrate easily into the brain, also failed to induce tremulous jaw
movements (Salamone et al., 1986). In addition, Salamone et al.
(1986) reported that the tremulous jaw movements induced by the
muscarinic agonist pilocarpine were blocked by scopolamine, but not
by methylscopolamine, an N-methylated derivative of scopolamine
that does not cross the blood brain barrier. Similar findings were
reported by Kelley et al. (1989), who observed that atropine blocked
physostigmine-induced tremulous jaw movements, but methylatro-
pine did not. Several lines of evidence indicate that cholinomimetic-
induced tremulous jaw movements result from stimulation of
muscarinic ACh receptors in the neostriatum, specifically in the
ventrolateral region. Intracranial injections of either physostigmine or
pilocarpine into ventrolateral neostriatum induced tremulous jaw
movements, while injections into other striatal subregions were
ineffective (Kelley et al., 1989; Salamone et al., 1990). Local injections
of scopolamine into the ventrolateral neostriatum blocked the
tremulous jaw movements induced by pilocarpine (Salamone et al.,
1990) as well as the anticholinesterase tacrine (Mayorga et al., 1997).
Tacrine-induced tremulous jaw movements were attenuated by
ventrolateral neostriatal injections of hemicholinium-3, which in-
hibits ACh synthesis by blocking choline uptake, while injections of
this drug into overlying neocortex were ineffective (Cousins et al.,
1998). In addition, microdialysis studies indicated that the elevation
of extracellular ACh in ventrolateral neostriatum that was produced
by tacrine administration was correlated with the level of tremulous
jawmovement activity induced by this drug (Cousins et al. 1999). This
evidence suggests that galantamine may be having its tremorogenic
effect through stimulation of central muscarinic receptors within the
neostriatum, which contains cholinergic interneurons and expresses
several subtypes of muscarinic receptors (Hersch et al., 1994; Ince
et al., 1997; Zhou et al., 2003).

The finding that scopolamine was able to block galantamine-
induced tremulous jaw movements is consistent with clinical studies
demonstrating that muscarinic antagonists are effective treatments
for parkinsonian symptoms, including tremor (Marsden et al., 1975;
McEvoy, 1983; Shrag et al., 1999; Bain, 2002; Milanov, 2001; Romrell
et al., 2003). However, muscarinic antagonists would not be useful as
treatments for galantamine-induced tremor in Alzheimer's disease
patients because these drugs would also antagonize the cognitive
benefits of cholinomimetic drugs. For that reason, the final experi-
ment sought to investigate the ability of the adenosine A2A antagonist
MSX-3 to reverse the tremulous jaw movements induced by 3.0 mg/
kg galantamine. As seen in Fig. 4, MSX-3 significantly attenuated
galantamine-induced tremulous jaw movements. Previous findings
using other cholinomimetics and adenosine A2A antagonists have
reported similar results. The adenosine A2A antagonists SCH 58261
and MSX-3 reduced the tremulous jaw movements induced by a low
dose of the muscarinic agonist pilocarpine (Collins et al., 2010a).
Similar findings have been reported using the adenosine A-
2A antagonists SCH 58251, ST1535, and ANR 94 to reverse the
tremulous oral movements induced by a low dose (2.5 mg/kg) of the
anticholinesterase tacrine (Simola et al., 2004; Tronci et al., 2007;
Pinna et al., 2010). The doses of MSX-3 used in the present study have
been shown to produce substantial in vivo occupancy of striatal
adenosine A2A receptors (Collins et al., 2010a). In contrast, the
adenosine A1 antagonist DPCPX did not occupy striatal adenosine A2A

receptors in vivo, and also did not reverse cholinomimetic induced
tremulous jaw movements (Collins et al., 2010a). Together with
these previous findings, the present results with the tremulous jaw
movement model suggest that selective adenosine A2A antagonists
could be useful for attenuating motor side effects such as tremor that
are induced by anticholinesterases in humans.

In addition to reversingmotor impairments induced by cholinergic
stimulation, there is a growing body of recent evidence suggesting
that adenosine A2A antagonists may also have utility in treating cog-
nitive dysfunction (see Shen and Chen, 2009 for review). Adminis-
tration of the adenosine A2A antagonist SCH 58261 has been shown
to improve social recognition memory (Prediger et al., 2005a, 2005b)
and to improve memory performance in a variety of behavioral tasks
(Takahashi et al., 2008). In adenosine A2A knockout mice, spatial
recognition memory and novelty exploration were found to be
enhanced compared to wild-type mice (Wang et al., 2006). Perhaps
most strikingly, in mice with β-amyloid induced memory loss, both
pharmacological blockade and genetic knockout of adenosine A2A

receptors were found to improve memory (Dall'igna et al., 2007;
Cunha et al., 2008). Conversely, stimulation of adenosine A2A

receptors, either through adenosine A2A agonist administration or
transgenic overexpression of A2A receptors in the cortex, has been
shown to impair memory retrieval and performance on spatial
working memory tasks (Gimenez-Llort et al., 2002; Pereira et al.,
2005). Taken together, these results indicate that co-administration of
adenosine A2A receptor antagonists with anticholinesterases may not
only improve parkinsonian motor impairments such as tremor that
are induced by the administration of these cholinomimetic agents,
but may also help to further augment the cognitive enhancement
produced by cholinesterase inhibition. Additional studies will seek to
more completely characterize the effects of these adenosine A2A

antagonists on cognition and motor function, an area of research that
is critical as anticholinesterases continue to be used in the treatment
of Alzheimer's disease, and in patients with Parkinson's disease who
are suffering from dementia.

In summary, the present results indicate that galantamine produces
tremulous jaw movements in rats that are similar to those produced
by other anticholinesterases, such as tacrine. The results of the present
experiments with rats are consistent with human studies suggesting
that caution should be used when prescribing anticholinesterases
for the treatment of Alzheimer's disease or dementia in parkinsonian
patients, as the use of these compounds may induce or exacerbate
parkinsonian symptoms such as resting tremor. Galantamine-induced
tremulous jaw movements in rats occur in the parkinsonian tremor
frequency range, and are blocked by muscarinic receptor antagonism.
The ability of the adenosine A2A receptor antagonist MSX-3 to reverse
galantamine-induced tremulous jaw movements in rats is consistent
with the growing literature indicating that this class of drugs can act on
neostriatal adenosine A2A receptors to exert antiparkinsonian actions
(Ferré et al., 2001, 2008; Wardas et al., 2003; Simola et al., 2004;
Schwarzschild et al., 2006; Salamone et al., 2008a,b;Morelli et al., 2009;
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Jenner et al., 2009; Salamone, 2010). Furthermore, the ability of
adenosine A2A antagonists to attenuate tremor induced by anticholin-
esterases is consistent with previous studies showing that parkinsonian
tremor in humans can be reduced by the nonselective adenosine
antagonist theophylline (Mally and Stone, 1996) and the adenosine A2A

antagonist istradefylline (Bara-Jimenez et al., 2003). Future studies
should seek to investigate whether administration of adenosine A2A

receptor antagonists may improve parkinsonian motor dysfunctions
induced by anticholinesterases while also augmenting the cognitive
enhancing benefits of these compounds.
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